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Abstract. We expect legged robots to perform complex navigation tasks
by having higher mobility and sensing capability. However, the mobility
does not easily lead to the ability of performing complex user tasks due to
restricted interfaces such as a joystick. To perform tasks that users want,
the robots require an expressive and accessible interface that can deliver
human intention with lower mental demands, even in complex environ-
ments. In this work, we propose a novel natural language-guided robotic
navigation framework that can effectively ground natural-language com-
mands in large space. Our framework consists of three modules: a scene-
graph generator, a grounding network, and a semantic navigation sys-
tem. The scene-graph generator incrementally stores the semantic in-
formation of object instances, properties, and relationships. Then, the
proposed scene graph-based grounding network (SGGNet) predicts the
desired goal robustly by associating instances in a scene graph with a user
command. Finally, the navigation system enables the robot to reach the
goal location. Our evaluation result shows SGGNet achieves a grounding
accuracy of 77.8% given 3, 000 scene graphs and 9, 000 natural language
commands. The model also achieves a grounding accuracy of 52.4% given
unforeseen objects. We demonstrate the robust performance of the pro-
posed framework in three real-world scenarios with various speech com-
mands.
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1 Introduction

Consider a problem of autonomous navigation for legged robots that can robustly
navigate through challenging environments. Conventional control interfaces, such
as a joystick or a touch panel, promise reliable operations but are hard to transfer
our complex intentions or missions. Thus, we need an interface that requires low
mental demand while being flexible to ground complex mission objectives.

Natural language grounding (NLG) is a candidate that has gained significant
attention in recent years. NLG, particularly visual grounding (VG), has shown
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capabilities of locating objects [4], object identification [1], and relationships [11,
20] in an image or point clouds, given a natural language query. To expand
grounding targets over pixels, researchers often use more structured sources such
as scene graphs [16]. In Robotics, the use of NLG itself is not a new paradigm [9].
However, the observable/operation area is too large to be presented in an image.
Therefore, researchers often perform language grounding high-level representa-
tions: a dictionary format of world model [2], and semantic map [15].

For example, conventional NLG approaches for navigation introduce method-
ologies for encoding the semantic information of a large navigation environment
by using visual bag-of-words [14], topological maps from landmarks [3], or scene
graphs [18]. The representation of scene graphs is particularly helpful for main-
taining semantic information and geometric information about the world jointly
considering topological relationships between entities. Further, the representa-
tion is also effective in incrementally adding/removing information based on new
observations.

In this paper, we introduce a novel natural language-guided navigation frame-
work that grounds navigational instructions given a scene graph. We particularly
focus on the design of a unified framework, which we call a scene-graph ground-
ing network (SGGNet), that encodes a linguistic input as well as a scene graph
to return a grounded target with necessary action. We also show a completed
semantic navigation framework combining the SGGNet and a simultaneous lo-
calization and mapping (SLAM) framework. Then, we show a legged robot can
perform various spatial grounding and navigation tasks in the real world.

The proposed framework consists of three phases. First, the robot generates
a scene graph under the observation and recognition of the object/location at-
tributes as well as their relationships with others. Then, given a navigational
phrase, the robot locates a referred goal from the scene graph. Finally, the robot
navigates to the goal by planning a collision-free path. We verify the accuracy
of the natural grounding model with the scene graph data from CLEVR [10]. In
addition, we demonstrate three indoor language-guided navigation tasks based
on the attribute, category, and relationship of goals with a real legged robot.

2 Natural Language-guided Navigation Framework

We describe the proposed natural language-guided navigation framework in de-
tail. Fig. 1 illustrates the overall framework, where a robot follows a navigation
task through three steps. The scene-graph generator first constructs a scene
graph storing identified objects or locations. Then, given navigational instruc-
tion, the SGGNet module performs natural-language grounding to find a desired
goal in the scene graph. Finally, the semantic navigation module operates path
planning to reach the target location while running SLAM.

2.1 Scene-Graph Generator

We introduce the scene-graph generation module, which constructs a scene graph
capturing environmental semantics, such as objects, attributes, or relations be-



Fig. 1. Block diagram of natural language-guided navigation framework. Green, or-
ange, and blue color boxes represent modules for the scene-graph generator, scene-
graph grounding network, and semantic navigation system, respectively.
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Fig. 2. Illustration of a scene graph with three-cone environment. We represent iden-
tified objects (Left) as nodes in the scene graph (Right). In the scene graph, each node
holds both node and edge features in a dictionary format. The node feature contains
object category and pose information. The edge feature includes the target node infor-
mation and a list of relationships between the source and the target node.



tween paired objects [22]. The module generates a dictionary format of a scene
graph, G = (V,E), where V and E are a set of nodes and directional edges,
respectively. Fig. 2 shows an example.

We define a dictionary format node as v = (c, p) ∈ V , where c indicates an
object category and p is a pose. If there exists a relationship r ∈ R between start
node vi and destination vj ∈ V , the module connects them to an edge eij ∈ E,
where R is a set of predicates:

• LEFT(vi, vj) if xj < xi,
• RIGHT(vi, vj) if xj ≥ xi,
• FRONT(vi, vj) if yj < yi,
• BEHIND(vi, vj) if yj ≥ yi,

where the x and y represent object coordinates in the global frame. Likewise,
we also represent an edge as a dictionary that consists of the destination node
ID number and the relationships between the current node and the destination
node. Thus, the edge is directional and it belongs to the start node of the edge.

The proposed module automatically generates a scene graph through object
detection and pose association steps. From a given image, an object detector,
YOLO [17], recognizes objects with their bounding boxes. Then, the module
estimates its poses by aligning the detection results with depth data. We consider
the resulting pose is precise if there are clustered point clouds within a certain
threshold distance. For association, we transform the estimated pose into the
global map frame using the odometry of the robot. Finally, the module adds the
name, attribute, and object pose to the scene graph.

Further, the module provides a human-in-the-loop update method that adds
a new node labeled through natural language grounding. When a human wants
to assign a name to the space where a robot is, our method registers the location
and position of the robot as a new node in the graph. This enables an operator
to manipulate the map and the robot robustly ground target spaces.

2.2 Scene-Graph Grounding Network (SGGNet)

We introduce SGGNet, which predicts the desired object from a scene graph
and an action, such as NAVIGATE or LABEL, given a natural language command.
Fig. 3 shows the entire architecture.

Given a natural language command, the SGGNet first encodes a scene graph
into a graph feature vector using a text encoder, BERT [5], to embed object
categories and relations. A graph neural network (GNN) then updates the vectors
using a message passing scheme. To hold permutation invariance, we then pool
the updated feature vectors to obtain the final graph feature vector.

Our model uses a pre-trained language model, BERT [5], to predict a target
object from the graph and action specified in the command. The speech-to-text
model, provided by Google Speech Recognition, first converts the voice command
to text. We then employ Prefix-tuning method [12], in which a trainable neural
network generates fake prefix vectors to combine with word embedding vectors



Fig. 3. Illustration of the scene-graph grounding-network architecture. Our model first
uses a speech-to-text model to convert the voice command spoken by a person to text.
The model also encodes a scene graph to a feature vector via a graph neural network.
Then, a pre-trained large language model, BERT [5], encodes the input sentence and
the graph-feature vector by concatenating the feature vector as a prefix of the input
sentence. The model concatenates the prefix and the text to be one sentence and
encodes them via the pre-trained language model. Finally, the last fully-connected
layer returns a grounded object from the graph and an available action specified in the
speech command.

from the original sentence. They then feed the concatenated vectors to the frozen
pre-trained model to perform natural language processing tasks. Our model uses
the final graph feature vector produced by the GNN as a prefix vector. Then,
our model concatenates the graph and word vectors and then feeds the vector to
the pre-trained language model. Finally, the last fully-connected layer returns a
target object and action pair.

2.3 Semantic Navigation

Lastly, we introduce a semantic navigation framework that consists of two steps:
1) semantic map construction and 2) planning and execution with grounded
commands.

To build a 2D semantic map, we first adopt a state-of-the-art SLAM algo-
rithm, called Fastlio2 [21], renowned for its fast computation performance. The
algorithm fuses the measurements from LiDAR and IMU sensors to estimate the
robot pose relative to the odometry frame. The fast computation of Fastlio2 en-
ables it to quickly process dense point clouds, resulting in a robust performance.
Through Fastlio2, we obtain the points registered in the global map frame. Then,
we filter the registered points by the z-axis coordinates to remove the ground and
ceiling. We then construct a 3D metric map by accumulating the filtered points
using Octomap library [8] for efficient map management. Finally, we project the
3D metric map to get a 2D occupancy-grid map for navigation and add scene
graph objects to the map.



Fig. 4. Visualization of the semantic map with identified objects (i.e., cones). The
rainbow-colored points represent the 3D metric map. The gray and black area repre-
sents the 2D occupancy map.

Our framework generates a collision-free path on a cost map using Dijkstra’s
algorithm [6] and DWA (Dynamic-Window Approach) local planner [7]. Based
on the metric map, we build a cost map showing obstacle regions by inflating the
occupied points as the robot size. After generating the cost map, using Dijkstra’s
algorithm, the robot plans the shortest path to reach the goal without collision.
The robot follows the path using the DWA local planner that determines the
robot velocity command.

3 Evaluation

We first evaluate the accuracy and robustness of our model, SGGNet. We also
demonstrate our natural language-guided navigation framework with a real legged
robot.

3.1 Experimental Setup

We trained and evaluated the SGGNet with the scene-graph data from CLEVR
dataset [10], where we only used the relationship in edges but not the node infor-
mation since the dataset has limited object categories, such as cube, cylinder, and
sphere. We collected 20 different words as object categories from WordNet [13]
and paired them with action words, such as NAVIGATE and LABEL. For each scene
graph in the dataset, we generated three typical natural-language commands for
robotic navigation or labeling. To train it, we used 12, 000 samples of the dataset
which contains a pair of 4, 000 scene graphs and four commands per scene graph
and we used the same form of the 3, 000 dataset for evaluation.



Also, to evaluate the robustness of the unseen objects, we generated an addi-
tional dataset with no common object category between the train and evaluation
datasets. As a baseline model, we used a simple multi-layer perceptron (MLP)
based network. The MLP-based network first encodes a graph and a text via
embedding layers to produce feature vectors. Then, the network concatenates
each feature vector and applies MLP to classify the object.

NVIDIA Jetson AGX OrinRealsense D455

Ouster OS1-32

Fig. 5. Sensor-computation system. The
Ouster OS1-32 LiDAR sensor produces point
cloud for metric map generation. The Intel
Realsense D455 camera takes RGB-D images
for object detection. Then, the NVIDIA
Jetson AGX Orin machine fuses the sensor
data for generating a scene map for semantic
navigation.

We also demonstrated natural
language-guided navigation tasks
using a real legged robot. In a
hall environment with three colored
cones, we gave three types of com-
mands referring to the attribute,
category, and relationship of the
objects.

Fig. 5 shows our sensor sys-
tem of the robot. We obtained im-
age and point clouds from Ouster
OS-1 32 channel LiDAR and Re-
alsense D455 RGB-D camera. To
perform navigation in a large space,
we use sensors with a relatively
long range. From the sensor data,
we process the natural language-
guided navigation framework with
an NVIDIA Jetson AGX Orin
machine, a single-board computer
with high GPU performance.

3.2 Experimental Results

Given known object categories, we evaluated our model, SGGNet, on a 3, 000
evaluation dataset and achieved 77.78% of accuracy. This means that our model
is able to understand the language instructions in various environments. Given
unknown object categories, our model achieved 52.4% of accuracy while the
MLP-based model achieved 0.93%. The result shows that our model is robust
to unseen objects successfully deploying the pre-trained language model from a
large dataset.

In addition, we demonstrated our natural language-guided navigation frame-
work with a real legged robot. Fig. 6 shows the navigation scenarios, where the
robot finds a goal in the indoor environment. Given the natural language com-
mand, SGGNet successfully found the expected destination from the scene graph.
Overall, the demonstrations show our robot understands human commands and
moves as intended in real-world navigation scenarios.



Fig. 6. Captures of natural language-guided robotic navigation experiments.

4 Conclusion

We introduced a natural language-based navigation framework that utilizes a
scene graph in NLG. This framework has an advantage in grounding navigation
instructions in a large environment. Given natural-language commands, the eval-
uation result shows that the SGGNet can robustly find the referred goal. The
framework can successfully conduct natural language-based navigation with at-
tribute, category, and relationship of goals with a real legged robot.

In future work, we will improve the accuracy of SGGNet by replacing the
BERT with a better pre-trained model, such as the DistilBERT [19]. Since the
DistilBERT has 40% fewer parameters than the BERT, it can also help to in-
crease the inference speed, which has an impact on real-time navigation system.
We also have a plan to improve the framework by combining a neural SLAM
method. The current framework can only perform navigation commands with
the shortest path. However, by combining the neural SLAM and scene graph, we
can plan a complex path, such as a constrained path that passes between two
obstacles.
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